

سبل تطوير الزراعات المحمية في ظل التغيرات المناخية

د. أسماء العريف

أستاذة تعليم عال فلاحي باحثة في وقاية النباتات علم الحشرات

المركز الجهوي للبحوث في البستنة و الفلاحة البيولوجيّة

<u>laarif_a@yahoo.fr</u> <u>laarif.asma@iresa.agrinet.tn</u>

ص.ب.57. شط مريم 4042 .سوسة

الهاتف: 73327543 - الفاكس: 73327070

القطاع الفلاحي في تونس يواجه عدة تحديات:

مع تغيّرات العصر الحالي باتت الفلاحة التقليديّة تواجه تحديات مُستمرة:

- تزايد عدد الستكان يزيد الطلب على الغذاء،
 - استنزاف الموارد المتاحة
- -التّركيز أكثر على القطاعين الصّناعي والسياحي
- ازدياد المخاوف من رواسب المبيدات والأسمدة على صحة الانسان وعلى
 - التغيرات المناخية وانعكاسها على الفلاحة

الزراعات المحمية وأهميتها

تعتبر الزراعات المحمية من أهم أنواع الزراعات التي يمكن أن تواجه التغير المناخي حيث أنها تتيح الإنتاج المستمر طوال العام، من خلال توفير بيئة مناسبة لنمو النباتات.

•ثاني أكبر مساحة من الزراعات المحمية تتمركز في حوض البحر الأبيض المتوسط (الأولى هي الصين).

يتميّز قطاع الخضروات في تونس بالزراعات خارج فصول الإنتاج (الزراعات البدرية و المتأخّرة) والتي تمثل ركيزة هامّة لهذا القطاع حيث يحتل إنتاجها المرتبة الأولى من صادرات الخضر.

Distribution des cultures protégées en sol et hors sol dans la zone méditerranéenne (Hectares) توزيع الزراعات المحمية في منطقة البحر الأبيض المتوسط (هكتار)

		Pourcentage	Serres	Total cultures
Pays	Multichapelles	de cultures	monotunnel	protégées
		hors sol		
Algeria ¹	6.000	1.0%	200	6.200
Tunisia ¹	1.307	1.3%	11.000	12.307
Egypt ¹	2.430	n.d.	23.000	25.430
Morocco ¹	10.000	n.a.	n.a	10.000
Israel ¹	6.500	23%	15.000	21.500
Turkey ¹	14.000	n.d.	1.500	15.500
Cyprus ^{1,2,3}	235	17%	n.d	235
Spain ²	60.000	5%	13.055	73.055
Italy ²	33.230	9%	25.000	58.230
France ²	9.370	30%	15.000	24.370
Greece ^{2,3}	6.000	5%	4.500	10.500
Total	149.072		108.255	257.327

Légende: ¹ Jouet, 2004; ² Incrocci et al, 2020; ³ Massa et al., 2020; n.a., non disponible.

La production protégée en méditerranée est classée 2^{ème} après la Chine (3.3 million hectares)

ألميريا، اسبانيا (زيارة في نطاق مشروع iGUESSmed)

ألميريا، اسبانيا (زيارة في نطاق مشروع iGUESSmed)

أهم المشاكل التي تواجه الزراعات المحمية

نتائج استبيان(250 فلاح/10% من فلاحي الزراعات المحمية) مشروع بحث 250% durable des systèmes de cultures protégées CléProD بتمويل مؤسسة البحث والتعليم العالي الفلاحي 2018-2014 بالتعاون مع المندوبية الجهوية للفلاحة بالمنستير وخلاياها الارشادية

1. صغر حجم المستغلات الفلاحية وتشتت الملكية لا يشجعان على الاستثمار في الفلاحة (أكثرمن 50% أقل من 1 هك و 3 بيوت)

2. تدهور نوعية التربة وضعف خصوبة الارض

3 عدم توفر الماء بالمناطق السقوية وغير السقوية

4. الاستعمال المفرط للأسمدة وللمبيدات

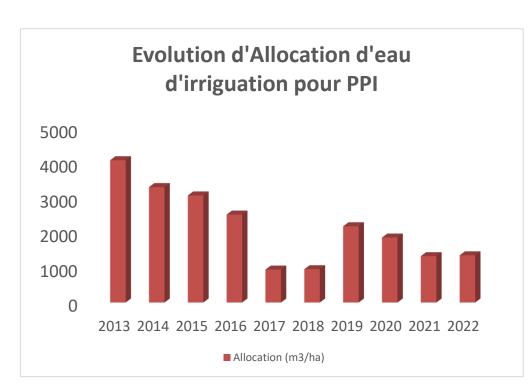
•استعمال مبيدات غير مبرر في العديد من الحالات (تدخل وقائي ضد الحشرات او متأخر)

•عدم احترام الجرعة (النقصان والزيادة تكسب الافة صفة المقاومة)

•عدم التوقى من مخاطر المبيدات

•استعمال عبوات المبيدات او رميها في الطبيعة

- 5. عدم تمكن نسبة هامة من الفلاحين من الحزمة الفنية
- 6. نقص التأطير وضعف الاحاطة والتكوين للفلاحين (ضعف الموارد البشرية والإمكانيات بخلايا الارشاد)
 - 7. قلة تثمين برامج ونتائج البحث

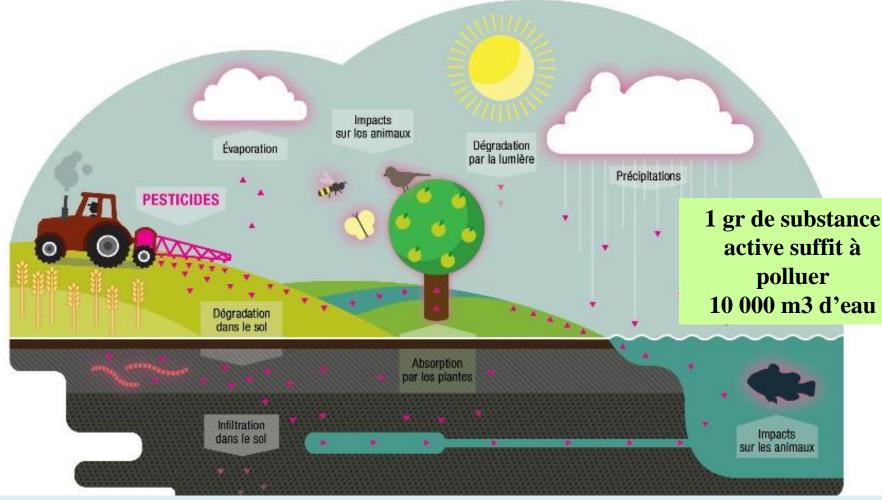


- 8. نقص في تنظيم المهنيين صلب هياكل مهنية
 - 9. صعوبة التزود بالمدخلات الفلاحية
 - 10. ارتفاع كلفة الانتاج
 - 11. عدم توفر اليد العاملة

المخاطر اليوم وغدا؟؟؟

- التغيرات المناخية والعوامل الطبيعية
- تدهور نوعية مياه الري (الملوحة ، التلوث بالمعادن...) ■قلة الموارد المائية وتراجع المخزون منها (الابار العشوائية...)

=الآفات (الحشرات والأمراض)


تأثير التغير المناخي على الحشرات

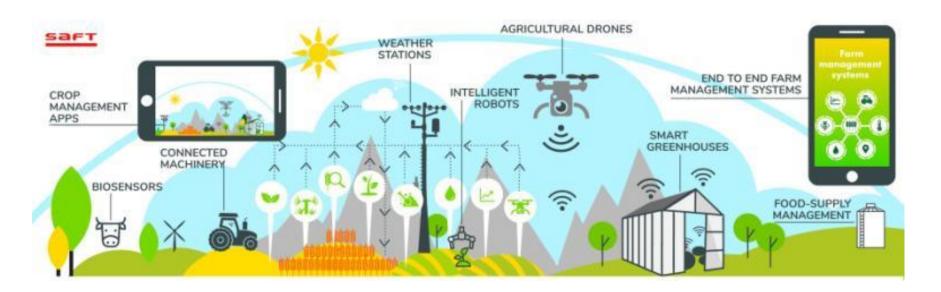
الحشرات كائنات من ذوات الدم البارد لا يمكنها إنتاج الحرارة في أجسامها، بمعنى أن درجة حرارة محيطها تلعب دورًا مهمًا في نموها وتطورها وسلوكها. وتعتبر درجة الحرارة من أكثر العوامل التي تؤثر على دورة حياتها وسلوكها وبقائها على قيد الحياة.

√سيؤدي المناخ الحار إلى زيادة معدلات نمو مجتمع الحشرات وزيادة عدد الأجيال. كما ستطول مدة موسم النمو والتكاثر وستزيد قدرة الحشرات على البقاء على قيد الحياة في الشتاء.

√وبالنظر إلى الآفات المهاجرة، سيتغير التوزع الجغرافي ومسار هجرتها ومخاطر دخولها إلى مناطق جديدة.

تاثير المبيدات على البيئة وعلى النظم الأيكولوجية

تفاقم ظاهرة الاحتباس الحراري، تدمير خصوبة التربة وتلوثها؛ أضرار على الحشرات النافعة وتدمير التنوع البيولوجي.


ما هي طرق تحسين الفلاحة على المستوى الوطني؟

- •اختيار الوقت المناسب والمكان المناسب ونوعية الزراعة
 - •متابعة الإنتاج السنوي للحقول وتقييم أدائها.
 - صيانة الموارد الطبيعية والحفاظ عليها.
 - رفع مستوى الإنتاج الفلاحي.
- تحقيق الانسجام والتكامل بين فروع النشاط الفلاحي المختلفة.
 - •دعم العملية التسويقية للمنتجات الزراعية داخلياً وخارجياً
- الاستفادة من نتائج البحوث العلمية الزراعية في المجال التطبيقي.

الاستفادة من نتائج البحوث العلمية الزراعية في المجال التطبيقي.

√تغير المفاهيم الفلاحية الى فلاحة رقمية، فلاحة دقيقة، فلاحة ذكية وكلها تعتمد على التكنولوجيا المتقدمة، وطرق مستدامة ونظيفة، في إطار ترشيد استخدام الموارد الطبيعية ولاسيما المياه،

√تتميز المزارع الذكيّة باعتمادها على نظم إدارة المعلومات وتحليلها، لتقديم إنتاج زراعي أكثر كفاءة واستدامة، من خلال اتخاذ أفضل قرارات الإنتاج الممكنة وبأقل التكاليف، كمكافحة الآفات، ومراقبة التربة، والري، ومراقبة المحاصيل.

INNOVATIVE GREENHOUSE SUPPORT SYSTEM IN THE MEDITERRANEAN REGION; EFFICIENT FERTIGATION AND PEST MANAGEMENT THROUGH IOT BASED CLIMATE CONTROL

Asma Laarif, Imed Ben Aissa, Mohsen Mansour, Houcine Jeder, Thameur Bouslama

•مشروع بحث متوسطي (تونس، ايطاليا،تركيا،اسبانيا)

- •90 شركاء من القطاع العام والخاص،
 - ·2024-2020 •
- تمویل اوروبي PRIMA Partnership for Research تمویل اوروبي (and Innovation in the Mediterranean Area 1.600.000€

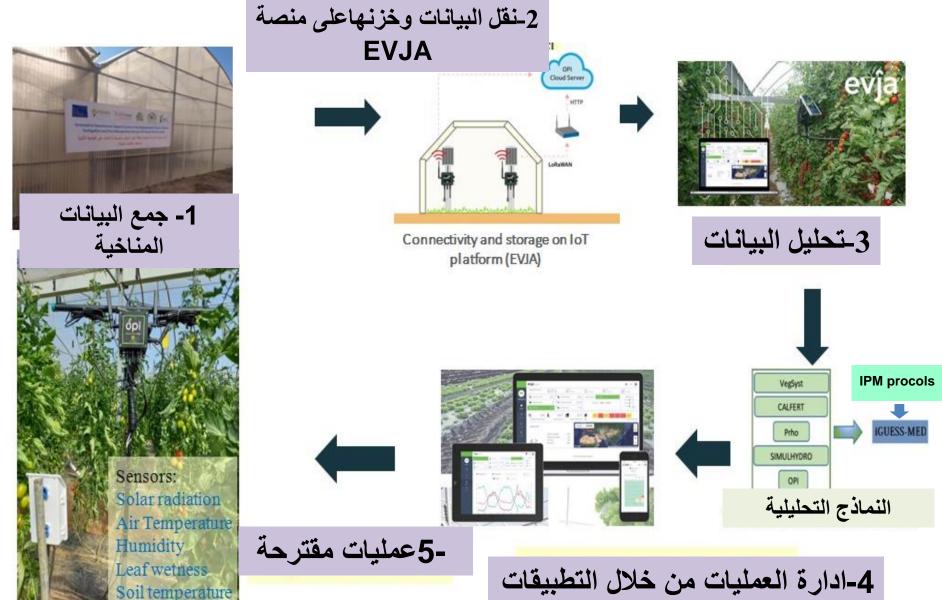
https://www.iguessmed.com https://www.facebook.com/iGUESSmed

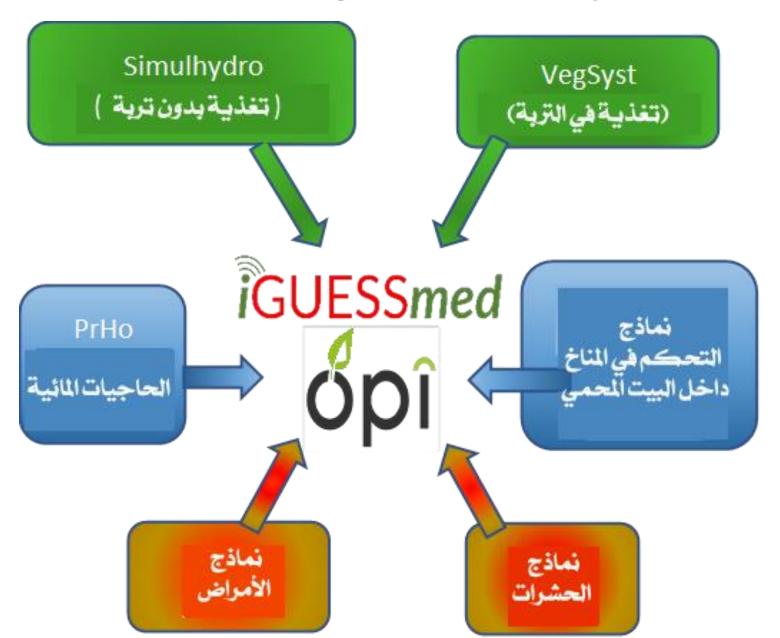
نظام دعم قرار مبتكر لتحسين الزراعات المحمية في منطقة البحر الأبيض المتوسط: التسميد والري الفعال وإدارة الآفات من خلال التحكم في المناخ القائم على إنترنت

تكنولوجيا "إنترنت الأشياء" IoT: هي ببساطة عملية ربط أي جهاز بجهاز آخر عبر الإنترنت، من الهواتف المحمولة إلى الأجهزة المستخدمة في الحقول الزراعيّة، بحيث يمكن تشغيلها والتحكم بها وإرسال واستقبال البيانات منها عن طريق الإنترنت.

قياس رطوبة وحرارة البيت الحامى

HUMEDAD, TEMPERATURA Y


SENSOR DE HUMEDAD DE HOJA



قياس رطوبة الورقة

iGUESSmed DSS working scheme (In soil and soiless crops) كيفية عمل نظام دعم القرار المشروع في الزراعة المحمية داخل وخارج التربة

النماذج التحليلية لمشروع iGUESSmed

المرحلة الاولى من التجارب اهتمت بالتثبت من امكانية تطبيق النماذج التحليلية في الاربع دول أعضاء مشروع البحث

تطبيق نظام دعم القرار لمشروع iGUESSmedعند الشركاء الاقتصاديين

- المحطة الجهوية بالمنستير للمركز الفني للزراعات المحمية والجيوحرارية (محطة الدعم نبهانة سابقا)
 - ■زراعة في التربة ، غير مسخنة
 - ■المساحة 0.150 هك
 - ■المشتلة: ملقمة PaiPai

وقع اعتماد تطبيقة التسميد والريVegSyst DSSفي موسم 2024-2023 ومقارنة الري والتسميد الذي اعتمد في الموسم السابق

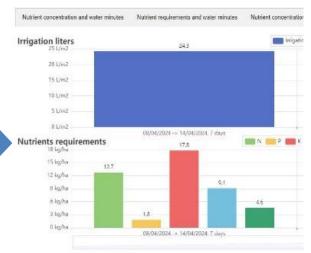
مقارنة استخدام المبيدات قبل وبعد اعتماد بروتوكول المكافحة المندمجة لموسمين 2022-2023، 2024-2024

VegSyst DSS in soil crops: Monastir-Tunisia)

اعتماد نموذج تغذية النبات (التسميد والري)

البيانات اللازمة للانموذج

- •خصائص التربة
- •خصائص السماد العضوي
 - •خاصيات الماء
 - •خصائص شبكة الري
 - •خصائص البيت الحامي
 - •خصائص المشتلة


البيانات المسجلة يوميا

•درجات الحرارة القصوى والصغرى المسجلة يومياالرطوبة القصوى والدنيا •الاشعاع الشمسي

OPI station

كميات الري والتسميد (كل عنصر) المقترحة

كميات الرى والتسميد المقترحة طيلة فترة معينة

Période	Azote Besoin (Kg/Ha)	Phosphore Besoin (Kg/Ha)	Potassium Besoin (Kg/Ha)	Calcium Besoin (Kg/Ha)	Magnésium Besoin (Kg/Ha)
du 18/12/2023 au 22/12/2023	4,3	0,2	2,3	1,2	1
du 25/12/2023 au 29/12/2023	6,1	0,4	3,9	2	1,5
du 30/12/2023 au 07/01/2024	7	0,5	4,9	2,5	1,8
du 08/01/2024 au 11/01/2024	4,1	0,3	2,9	1,5	1,1
du 12/01/2024 au 14/01/2024	4	0,6	5,6	2,9	0,9
du 15/01/2024 au 17/01/2024	1,4	0,2	2	1	0,3
du 18/01/2024 au 21/01/2024	3,4	0,5	4,6	2,4	0,7
du 08/03/2024 au 01/04/2024	37,8	4,1	43,6	22,4	13,3
du 02/04/2024 au 08/04/2024	13,1	1,7	17,4	8,8	4,8

Période	Besoins (I/m²)	Besoins (I/serre)	Temps d'irrigation (min)
18/12/2023 au 22/12/2023	3,1	3100	28,3
du 25/12/2023 au 29/12/2023	5,3	5300	48,1
du 30/12/2023 au 07/01/2024	6,7	6700	60,1
du 08/01/2024 au 11/01/2024	4	4000	36
du 12/01/2024 au 14/01/2024	3,6	3600	32,8

معطيات تخص البيت الحامي والماء وتقنية الري وخصائص التربة

Soil characteristics and manure application during 2022-2023

2022-2023			
Soil information			
Density (t / m3)	1,5		
Nitrates (mg / kg)	13,1		
Organic matter (%)	3,62		
Sand (%)	68,65		
Clay (%)	4,8		
Silt (%)	23,8		
Carbonates (%)	11,7		
P available Olsen			
(mg / kg)	98		
K exchangeable			
(mg / kg)	1023		
Ca exchangeable			
(mg / kg)	1022		
Mg exchangeable			
(mg / kg)	42		
EC (dS/m)	9,55		
	Manure		
Туре	Cow (mature)		
Application date	10/09/2022		
Volume (m3) 50			

Water and irrigation system characteristics during 2022-2023

Dripper flow rate (L/h)	4
Configuration of the drippers (single/double)	single
Distance between lines (cm)	150
Distance between drippers in the line (cm)	40
EC (dS/m)	1,6

Greenhouse characteristics during two seasons 2022-2023 and 2023-2024

Surface (Ha)	0.15
Width (m)	30
Length (m)	50
Ridge height (m)	6
Gutter height (m)	4
Sidewall surface (m²)	263
Endwall surface (m ²)	162
Roof surface (m²)	1575
Doors (width x height) (m*m)	3.2*3.6
Vent openings (roof, endwalls, sidewalls) (m²)	410

Crop information during 2022-2023

	2022-2023
Transplanting date	11/10/2022
Estimated date of the end of the cultivation	24/05/2023

اعتماد برنامج مقاومة مندمجة

تغطية التربة

الشبكة والابواب المزدوجة

اعتماد التريكوغراما المحلية لمقاومة توتا

المصائد اللاصقة والفرومونية والمتابعة الاسبوعية للحالة الصحية

مشاتل ملقمة مقاومة لامراض التربة والفيروسات

متابعة وجمع المعطيات المناخية أسبوعيا

تطبيق نظام دعم القرار لمشروع iGUESSmedعند الشريك الاقتصادي الثاني

•اسم الشركة: La maison de l'Oasis، شركة تونسية هولندية مقر ها منطقة الحامة بو لاية قابس.

•نوع الزراعة: خارج التربة

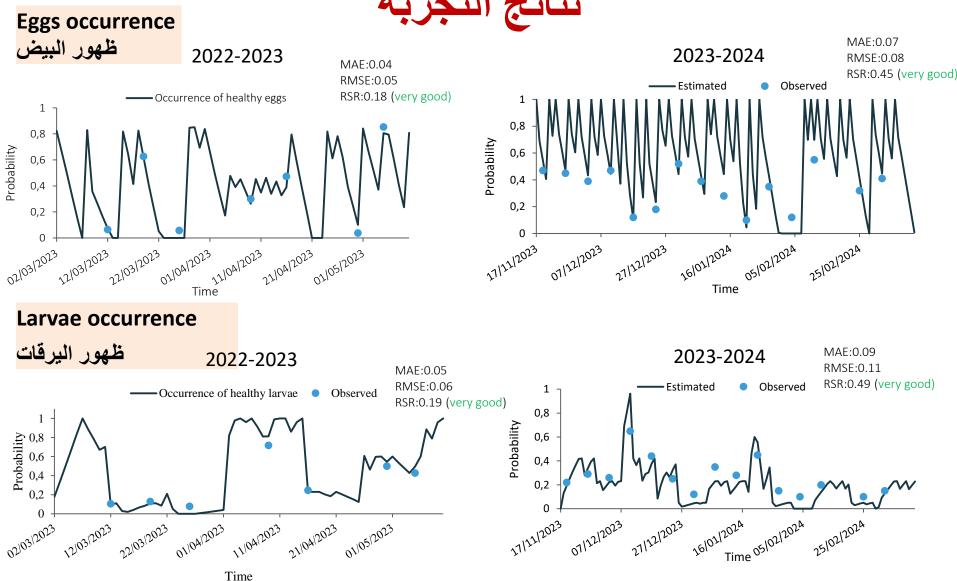
•نوع البيت الحامي: بيت زجاجي متعدد الانفاق مسخن بالطاقة الجيوحرارية

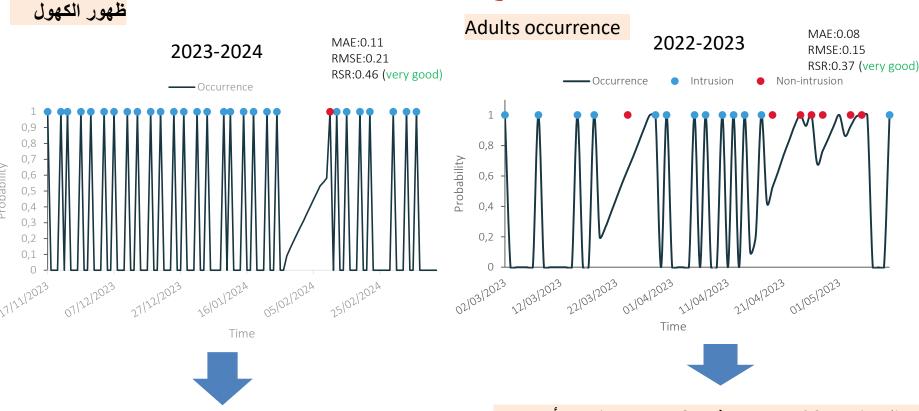
• مساحة البيت: 4.5 هكتار

•الصنف: التادينا Altadina

•فترة الالمتابعة: خلال موسمين زراعيين متتاليين

- تأطير مشاريع ختم دروس في متابعة المعطيات المناخية بالبيت الحامي والمكافحة المندمجة للحشرات للحصول على شهادة مهندس فلاحي


- بناء انموذج تنبؤي لوجود اطوار حشرة التوتا بالبيت الحامي واقتراح بروتوكول لمكافحتها (تسجيل براءة اختراع)


Validation results

Validation results

نتائج التجربة

تم الكشف عن 25 مجموعة: مجموعة واحدة فقط من المجموعات السكانية تكاثرت داخل البيت الحامي والبقية أتت من الخارج تمت السيطرة على جميع االمجموعات حتى الآن عن طريق المداواة التى استهدفت البيض واليرقات

■تم اكتشاف 13 مجموعة :6 مجموعات تأتي من مجموعات الحامي و7 مجموعات الحامي و7 مجموعات متأتية من الخارج

■تم التحكم في سبع مجموعات عن طريق المداواة بمبيدات كيميائية وبيولوجية وحشرات نافعة التي استهدفت اليرقات ولم يتم السيطرة على ستة أفواج

الخلاصة

√تعد تونس من المناطق التي تواجه وستواجه أزمات بيئية كبيرة، مثل نقص المياه الصالحة للفلاحة، وتغير المناخ والجفاف والتصحر، الأمر الذي يؤثر سلباً في توفير الغذاء وتحقيق الأمن الغذائي، وبالتالي فهي من بين المناطق التي تحتاج لتطبيق تقنيات الفلاحة الدقيقة والفلاحة الذكية.

√أهم الصعوبات التي تعترض تبني هذه الانواع الجديدة من الفلاحة هو ضعف البنى التحتية للاتصالات والإنترنت في بعض المناطق، وحاجة هذه التقنيات إلى مهارات لا يمتلكها الكثير من المزارعين، عدا عن التكلفة المادية التى تشكل عائقاً للكثيرين.

الفلاحة الدقيقة والفلاحة الذكية ستشهد نمواً متزايداً في السنوات القادمة، شأنها شأن كل التقنيات الذكية العصرية، كما أن انتشار التقنيات الحديثة ووصولها إلى مختلف الفئات، وسهولة استخدامها من قبل نسبة كبيرة من جيل الثورة المعلوماتية، سيسهم بشكل كبير في تبني ممارساتها. https://iguessmed.evja.eu/

مشاريع البحث في الموضوع:

Prevention and control of new and invasive geminiviruses infecting vegetables in the Mediterranean:GEMED-PRIMA 2

Innovative Greenhouse Support System in the Mediterranean Region efficient fertigation and pest management through IoT based climate control: iGUESSmed-PRIMA 1

Gestion intégrée et durable des systèmes de cultures légumières protégées; CLéProD

